Effect of Eccentricity Fluctuations on Elliptic Flow

Exploring the secrets of the universe

Art Poskanzer

Color by Roberta Weir

The Berkeley School 2010

GSI-LBL Collaboration

July 1974 -- 36 years ago

Reinhard and Rudolf Bock walked into my office

Hermann Grunder

2 Aug 74

Reinhard

Rudolf Bock

photo by Jef Poskanzer

Filter theory to compare with data

Directed Flow

Plastic Ball, K.G.R. Doss et al., PRL 57, 302 (1986)

Best Ellipsoid

Plastic Ball, H.H. Gutbrod et al., PRC **42**, 640 (1991) Diogene, M. Demoulins et al., Phys. Lett. **B241**, 476 (1990) Plastic Ball, H.H. Gutbrod et al., Phys. Lett. **B216**, 267 (1989)

Analyze in the Transverse Plane

Transverse Momentum Analysis

Fourier Harmonics

Fourier harmonics:

 $1 + 2\mathsf{v}_1\cos(\phi - \Psi_{\mathsf{RP}}) + 2\mathsf{v}_2\cos[2(\phi - \Psi_{\mathsf{RP}})] + \cdots$

 $v_{n} = \langle \cos[n(\phi_{i} - \Psi_{RP})] \rangle$

To remove acceptance correlations

Flatten event plane azimuthal distributions in lab

To measure event plane resolution

Correlate two independent sub-groups of particles

Event plane resolution correction made for each harmonic Unfiltered theory can be compared to experiment!

Tremendous stimulus to theoreticians!

S. Voloshin and Y. Zhang, hep-ph/940782; Z. Phys. C **70**, 665 (1996) See also, J.-Y. Ollitrault, arXiv nucl-ex/9711003 (1997) and J.-Y. Ollitrault, Nucl. Phys. **A590**, 561c (1995) A.M. Poskanzer and S.A. Voloshin, PRC **58**, 1671 (1998)

Elliptic Flow vs. Beam Energy

Generating Function Methods

$$\langle\langle u_{n,1}u_{n,2}u_{n,3}^*u_{n,4}^*\rangle\rangle \equiv \langle u_{n,1}u_{n,2}u_{n,3}^*u_{n,4}^*\rangle - 2\langle u_{n,1}u_{n,2}^*\rangle^2 = -v_n^4\{4\}$$

Minimize complex generating function to evaluate four-particle correlation

Direct Four-Particle Correlation

$$\left\langle e^{i2(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle = \frac{\left(\sum e^{i2(\phi_i - \phi_j)}\right)\left(\sum e^{i2(\phi_k - \phi_l)}\right) - degeneracies}{N(N-1)(N-2)(N-3)}$$

$$degeneracies = \sum \left(e^{i2(\phi_i - \phi_j)}
ight)^2 \ + 2 \left(\sum e^{i2(\phi_i - \phi_j)} e^{i2(\phi_i - \phi_k)}
ight) \ + 2 \left(\sum e^{i2(\phi_i - \phi_j)} e^{i2(\phi_k - \phi_i)}
ight)$$

4-particle correlations without a generating function

Sergei Voloshin (2006) Dhevan Gangadharan, thesis, UCLA (2010)

v₂{4} Direct Cumulant

$\left< \left< e^{i2(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right> \right> =$	$\left\langle e^{i2(\phi_1+\phi_2-\phi_3-\phi_4)} \right angle$	
_	$2\left\langle e^{i2(\phi_1-\phi_3)}\right\rangle\left\langle e^{i2(\phi_2-\phi_4)}\right\rangle$	
_	$\left\langle e^{i2\phi_1} \right\rangle \left\langle e^{i2(\phi_2 - \phi_3 - \phi_4)} \right\rangle$	acceptance
_	$\left< e^{i2\phi_2} \right> \left< e^{i2(\phi_1 - \phi_3 - \phi_4)} \right>$	corrections
_	$2\left\langle e^{-i2\phi_{3}} ight angle \left\langle e^{i2(\phi_{1}+\phi_{2}-\phi_{4})} ight angle$	
_	$\left\langle e^{i2(\phi_1+\phi_2)} ight angle \left\langle e^{-i2(\phi_3+\phi_4)} ight angle$	
+	$4\left\langle e^{i2\phi_{1}}\right\rangle \left\langle e^{-i2\phi_{3}}\right\rangle \left\langle e^{i2(\phi_{2}-\phi_{4})}\right\rangle$	
+	$4\left\langle e^{i2\phi_{2}} ight angle \left\langle e^{-i2\phi_{3}} ight angle \left\langle e^{i2(\phi_{1}-\phi_{4})} ight angle$	
+	$2\left\langle e^{i2\phi_{1}} ight angle \left\langle e^{i2\phi_{2}} ight angle \left\langle e^{-i2(\phi_{3}+\phi_{4})} ight angle$	
+	$2\left\langle e^{-i2\phi_{3}} ight angle \left\langle e^{-i2\phi_{4}} ight angle \left\langle e^{i2(\phi_{1}+\phi_{2})} ight angle$	
_	$6\left\langle e^{i2\phi_{1}}\right\rangle \left\langle e^{i2\phi_{2}}\right\rangle \left\langle e^{-i2\phi_{3}}\right\rangle \left\langle e^{-i2\phi_{4}}\right\rangle$	

$$\left\langle \left\langle e^{i2(\phi_1+\phi_2-\phi_3-\phi_4)} \right\rangle \right\rangle = -v_2^4\{4\}$$

Dhevan Gangadharan, thesis, UCLA (2010)

Direct v₂{4}

Methods

- "Two-particle":
 - v₂{2}: each particle with every other particle
 - v₂{subEP}: each particle with the EP of the other subevent
 - v₂{EP} "standard": each particle with the EP of all the others
 - v₂{SP}: same, weighted with the length of the Q vector
- Many-particle:
 - v₂{4}: 4-particle 2 * (2-particle)²
 - Generating function or Direct Cumulant
 - v₂{q}: distribution of the length of the Q vector
 - v₂{LYZ}: Lee-Yang Zeros multi-particle correlation

Integrated v₂

Measurements

- Two-particle methods
 - contain nonflow $\langle \cos \phi_1 \cos \phi_2 \rangle = \langle v^2 \rangle + \delta$ nonflow
 - mean of some power of the distribution in the Participant Plane $v_2\{ \} = \langle v^{\alpha} \rangle^{1/\alpha}$
- Multi-particle methods
 - suppress nonflow
 - mean in the Reaction Plane in Gaussian approx.

Effect of Eccentricity Fluctuations on Elliptic Flow

- Mean of some power of the distribution
- Participant plane fluctuations

Effect of Fluctuations on the Mean

Points: simulations by PHOBOS+

Ollitrault, Poskanzer, and Voloshin, PRC 80, 014904 (2009)

Reaction, Participant, and Event Planes

Voloshin, Poskanzer, Tang, and Wang, Phys. Lett. B 659, 537 (2008)

v_2 Fluctuations from ε_{part} Fluctuations

Assume width with same percent width as $\varepsilon_{\text{part}}$: $\sigma_{v2} = \frac{\sigma_{\varepsilon}}{\langle \varepsilon \rangle} \langle v_2 \rangle$ σ_{ε} is from standard deviation of nucleon MC Glauber of $\varepsilon_{\text{part}}$

Bessel-Gaussian:
$$\frac{dn}{dv} = \frac{v}{\sigma_0^2} I_0 \left(\frac{v v_0}{\sigma_0^2} \right) \exp\left(-\frac{v^2 + v_0^2}{2\sigma_0^2} \right)$$
2D Gaussian fluctuations in ε_x and ε_y in the reaction plane lead to Bessel-Gaussian fluctuations along the participant plane axis
$$u_1 = \frac{v}{\sigma_0^2} I_0 \left(\frac{v v_0}{\sigma_0^2} \right) \exp\left(-\frac{v^2 + v_0^2}{2\sigma_0^2} \right)$$

Voloshin, Poskanzer, Tang, and Wang, Phys. Lett. B 659, 537 (2008)

Theory is in RP, except...

- Event-by-Event without impact parameter
- Kodama
 - NeXSPheRIO
 - Hydro for event-by-event participants
- Hirano
 - Determine PP for each event
 - Rotate event to RP
 - Thus include PP fluctuations in initial conditions

R. Andrade et al., Phys. Rev. Lett. **97**, 202302 (2006) T. Hirano and Y. Nara, PRC **79**, 064904 (2009)

Eccentricities

Hiroshi Masui Drescher and Nara, PRC **76**, 041903(R) (2007)

Eccentricity Fluctuations

Hiroshi Masui Drescher and Nara, PRC **76**, 041903(R) (2007)

An Application to Data

• Correct for nonflow
$$\langle \cos \phi_1 - \cos \phi_2 \rangle = \langle v^2 \rangle + \delta \longleftarrow \text{nonflow}$$

- Correct to mean v₂ in PP
- Correct to RP
- Assumptions

$$\sigma_{v2} = rac{\sigma_{arepsilon}}{\langle arepsilon
angle} \langle v_2
angle \qquad ext{MC $arepsilon$ participant} \ \delta_2 = 2 \; \delta_{pp} / N_{ ext{part}} \qquad \delta_{pp} = 0.0145 \ \delta_{ ext{etaSub}} = 0.5 \; \delta_2 \qquad ext{less nonflow}$$

Data Corrected to <v₂>

v₂ in the Reaction Plane

Voloshin, Poskanzer, Tang, and Wang, Phys. Lett. B 659, 537 (2008)

New Results

- Direct Cumulants
- Non-Gaussian behavior

Participant Plane

Glauber

CGC

Reaction Plane

$$v_{RP} = v_{PP}\sqrt{1 - (\sigma_{\varepsilon}/\varepsilon)^2}$$

STAR preliminary

Can Compare to Theory

Because we now:

- Remove acceptance correlations
- Correct for Event Plane resolution
- Correct for mean of a power of the distribution
- Correct for fluctuations of the PP

Test Method Using $\varepsilon_{\text{part to}} \varepsilon_{\text{std}}$ dashed blue uses $\varepsilon_{RP} = \varepsilon_{PP} \sqrt{1 - (\sigma_{\varepsilon, PP} / \varepsilon_{PP})^2}$

solid blue uses exact equations in Gaussian Model paper

Voloshin, Poskanzer, Tang, and Wang, Phys. Lett. B 659, 537 (2008)

CGC participant fluctuations less part and std much closer together so can say RP = std to more peripheral collisions

Voloshin, Poskanzer, Tang, and Wang, Phys. Lett. B 659, 537 (2008)

Glauber ε_{part} **Distributions**

Gaussian and Bessel-Gaussian fits to the black calculations

Hiroshi Masui

Non-Gaussian for peripheral collisions

E can not be greater than 1

Status

• Even though the eccentricity distribution is not Gaussian, still could be:

$$v_2 \propto \varepsilon_2 \qquad \sigma_{v2} = \frac{\sigma_{\varepsilon}}{\langle \varepsilon \rangle} \langle v_2 \rangle$$

. However,

$$v_2\{4\} \neq v_{2,\mathrm{RP}}$$

- for peripheral collisions
 - as estimated from Glauber calculations

Emphasize Direct v₂{4}

- No Event Plane
- Corrects for acceptance correlations
- One pass through the data
- Eliminates 2-particle nonflow correlations
- Gives mean of the distribution
- Gives v₂ in the RP
 - except for peripheral collisions